The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 Da: analysis of sequence differences between type I and type II keratins.

نویسندگان

  • P M Steinert
  • D A Parry
  • E L Racoosin
  • W W Idler
  • A C Steven
  • B L Trus
  • D R Roop
چکیده

We present the complete nucleotide and deduced amino acid sequences of a mouse epidermal keratin subunit of 60,000 Da. The keratin possesses a central alpha-helical domain of four tracts (termed 1A, 1B, 2A, and 2B) that can form coiled-coils, interspersed by short linker sequences, and has non-alpha-helical terminal domains. This pattern of secondary structure is emerging as common to all intermediate filament subunits. The alpha-helical sequences conform to the type II class of keratins. Accordingly, this is the first type II keratin for which complete sequence information is available, and thus it facilitates elucidation of the fundamental distinctions between type I and type II keratins. It has been observed that type I keratins are acidic and type II keratins are neutral--basic in charge. We suggest that the basis for this empirical correlation between type and charge resides in the respective net charges of the 1A and 2B tracts. Calculations on interchain interactions between charged residues in the alpha-helical domains indicate that this keratin prefers to participate in dimers according to an in-register parallel arrangement. The terminal domains of this keratin possess characteristic glycine-rich sequences, and the carboxyl-terminal domain is highly homologous to that of a human epidermal keratin of 56,000 Da. According to the hypothesis that end-domains are located on the periphery of keratin filaments, we conclude that the corresponding mouse and human keratins are closely related, both structurally and functionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence and expression of a human type II mesothelial keratin

Using mRNA from cultured human mesothelial cells, we constructed bacterial plasmids and lambda phage vectors that contained cDNA sequences specific for the keratins expressed in these cells. A cloned cDNA encoding keratin K7 (55 kD) was identified by positive hybrid selection. Southern Blot analysis indicated that this sequence is represented only once in the human genome, and Northern Blot ana...

متن کامل

Molecular characterization of apolipoprotein A-I from the skin mucosa of Cyprinus carpio

Apolipoprotein A-I is the most abundant protein in Cyprinus carpio plasma that plays an important role in lipid transport and protection of the skin by means of its antimicrobial activity. A 527 bp cDNA fragment encoding C terminus part of apoA-I from the skin mucosa of common carp was isolated using RT-PCR. After GenBank database searching, a partial sequence containing a coding sequence (CDS)...

متن کامل

Molecular cloning and characterization of the Endo B cytokeratin expressed in preimplantation mouse embryos.

A cDNA clone of a keratin-related, intermediate filament protein, designated Endo B, was constructed from size-fractionated parietal endodermal mRNA and characterized. The 1466-nucleotide cDNA insert contains an open reading frame of 1272 nucleotides that would result in 5' and 3' noncoding sequences of 54 and 60 nucleotides, respectively. The predicted amino acid composition, molecular weight ...

متن کامل

Cloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris

The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...

متن کامل

Expression of Unusually Large Keratins during Terminal Differentiation: Balance of Type Type II Keratins Is Not Disrupted land

When a basal epidermal cell undergoes a commitment to terminally differentiate, it ceases to divide and begins to migrate outward towards the surface of the skin. Dramatic changes in its cytoskeletal architecture take place, accompanied by numerous changes in the expression of keratins, a family of related polypeptides that form 8-nm filaments in these cells. We show here that a shift to the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 18  شماره 

صفحات  -

تاریخ انتشار 1984